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Abstract

The stres vs. strain curve with yield and the sonic modulws vs. strain curve of fibres of linear polymeis below the glass transition
temperatue are modellal by the continuows chan modéd in combination with asimple yield model It issupposd tha yield of polyme fibres
is due to shea deformatiaon of the domains The yield modé is basel on a critica shea yield strain A goad agreemenbetwea the
experimenthtensike and sonc modulus vs. stran curves ard the theoretich curves has been obtainel for a selectio of poly(p-phenylene
terephthalamideand poly(ethylere terephthalatefibres © 199 Elsevig Sciene Ltd. All rights reserved.
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1 . Introduction

The stres vs. stran curve of polyme fibres below their
glass transtion temperaure is charaterisel by a more or
less pronouncd yield at abou 0.006-0.025 stran. Some
typicd stres vs. stran curves hawe been deficted in Fig.
1. Below the yield point the defommation of the fibre is
almog elastic Above the yield point the defamation of
the fibre is partly permarmnt. In the classica theory, yield
isdescrbed by ayield criterion. Initsmog geneal form the
yield criterion isafunction of all componens of the applied
stresswhich reaches acritical value at the onse of yield of
the mateial. Origindly this yield theory was developé for
the descrption of the yield of crystaline materals like
metals Although the yield behaviou of polymeis depemls
on the temperéure ard the time scak of the deformation,
Ward showael that the classichideas of plastidty are rele-
vart to the yield of polymes as well [1]. Underlining the
comma features of the yield of polymers he remaks that
the sameyield behavour can be found for all polyme mate-
rials, indepenéntly of their chemta naure and physical
structure. Above the yield point slip band and kink bands
hawe been observe for both polyme ard crystaline
materals which is an indicaion for the similarity of the
yield processs in polyme arnd crystaline materals on a
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mesoscopt scale For crystaline mateials it is geneally

acepted that on amolealar scak the plastc deformation is

due to motion of dislocations. For crystaline polymers in

particular for highly crystalline polyethyleng it has been
shown tha plastc deformation can be explaned by motion

of dislocatiors as well [2—5]. Mott ard Argon argie that in

ca® of amorphous polymea's the deformation mechanism
may be more complicded [6,7]. However the similarity

of theyield of polymess ard crystalline materias on macro-
scopc and mesoscop levd justifies the use of the same
phenanenologta continwm theory for the modelling of

the stres vs. stran behaviou of polyme fibres.

A simple criterion for the yield of isotropic polymesis
the Tresca yield criterion which states tha yield occus
when the maximum shea stres reachs a critical value
[8]. The Coulomb yield criterion suppose that the critical
shea yield stres is a linealy increaing function of the
stres nomal to the shea plane [9]. Anothe well-known
yield criterion is the von Mises yield criterion which relates
the occurrance of yield to a critical value of the secad
invariant of the deviabric stres tensor [10]. The logical
extension of the Tres@ yield criterion for anisotropic mate-
rials is the resolhed shear-streslaw of Schmd [11]. This
yield criterion states tha yield occus when the resoled
shea stres in a slip direction reachs a critical value, i.e.
the direction of the shea deformatia is determned by the
strudure of the material On a microscofpc scak polyme's
are not isotropic at all. Due to the presene of the covalent

0032-38@/99/% - see front matte © 199 Elsevie Sciene Ltd. All rights reserved.

Pll: S0032-3861(99)00194-9



6114 J.J.M. Baltussen, M.G. Northolt / Polymer 40 (1999) 6113-6124

direction of the average orientation, or at a small angle with
Diolen 174S this direction. For example it does not predict the yield point
for a stress perpendicular to the axis of an oriented fibre.
In this article it will be shown that the stress vs. strain
curve and the modulus vs. strain curve of polymer fibres can
be described by the continuous chain model in combination
with a simple yield assumption based on a critical shear
yield strain. First the theory for the deformation of a yield-
ing fibre is developed. It will be shown that the plastic
deformation of a domain is a simple shear deformation. It
is proposed that the plastic shear deformation is a function
of the elastic shear deformation. Next the nature of the yield
and the applicability of the continuous chain model is
studied. Finally the functional dependence of the plastic
g. 1. Typical stress vs. strain curves of two PET fibres. deformation is examined and the calculated curves
compared with the observed curves of poly(ethylene
chains, the local mechanical properties are highly anisotro- terephthalate) (PET) and poptphenylene terephthala-
pic. Young proposed a critical resolved shear stress modelmide) (PpPTA) fibres. In the last section it will be shown
for the yield of highly oriented polyethylene [4,5]. With this  that the stress vs. strain curve and the sonic modulus vs.
model he explained the results of compression experimentsstrain curve can be described simultaneously by the equa-
in which the angle between the chain orientation and the tions for the yielding fibre. Preliminary results of this model
compression direction was about°45 have been published earlier [15].
The elastic deformation of polymer fibres has been
described previously by the continuous chain model
[12,13]. It has been shown in Ref. [12] that the curve of 2. Theory of the deformation of a yielding fibre
the elastic or sonic modulus vs. the strain can be described
by the continuous chain model below and above the yield 2-1. Introduction
point, which implies that the same mechanism governs the ) ) o
deformation above and below the yield point. The contin- _ItiS supposed that the deformation of a fibre is composed
uous chain model for the elastic deformation of polymer of an elastic and a permane_nt contribution which can _be
fibres describes the deformation of the fibre as the averageP0th reduced to the local elastic and permanent deformation.
deformation of small perfectly oriented domains. It shows For the description of the deformation of the fibre the
that only the extension of the chain and the shear of adjacentcontinuous chain model is used. The continuous chain
chains contribute to the tensile deformation of the fibre. This Model has been described in Refs. [12,13]; a summary of
description of the deformation of a fibre suggests that the the model is given next. The fibre consists of long and
position of the yield point can be understood from Schmid’s continuous chains which do not break during the deforma-
law for the resolved shear yield stress applied in the systemton- Along the chain small linear segments of equal length
of local symmetry. At a critical value of the resolved shear &€ considered. The angle between the undeformed chain
stress, local debonding of the secondary bonds betweers®dmentand the fibre axis is denoted@yafter a deforma-
adjacent chains occurs, resulting in a permanent displace-ion the angle is denoted by. The orientation distribution
ment of adjacent polymer chains and thus a permanent sheaPf @ iS described by the distribution functign(®). The
deformation of the domain. It has been shown by Northolt immediate surroundings of a segment is a domain. All the
and Baltussen that the yield strain predicted by this yield domainsp have equal mechanical properties. The projec-
criterion agrees well with the experimentally determined ton length of a chain is the length of the chain along the
yield strain of polymer fibres and sheets. In particular it fiore axis. The fibre strain is equal to the average relative
explains the position of the yield point as a function of the increase of the projection length. The projection length of a
orientation parameter [14]. This model for the yield empha- €hain at a fibre stress; is given by
sizes once more the essential role of the orientation distribu-| — | ([1 + £,(@, o7)]cos (O, o7)). &N
tion in the mechanical properties of polymers. From the
analysis of the compression strength of polymer fibres it and thus the fibre strain by
results that the yield strain in compression is approximately L-L,
equal to the yield strain in extension. The continuous chain & = ——- (2
model can not be used for the calculation of the yield point 0
of oriented polymers at an arbitrary stress. It is only valid if ~ In order to incorporate the yield in the theory for the
the deformation is determined by average projection length elastic extension of polymer fibres several concepts from
of the polymer chains. So, the applied stress should be in thethe continuum mechanics will be introduced. The
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deformation is described by the mappigg a schematic For the description of the stress vs. strain curve of the
drawing of ¢ is presented in Fig. 2. The deformation gradi- fibre including yield it is supposed that all domains, in addi-
ent of ¢ is denoted by. The deformation gradiefft can be tion to equal elastic properties, have equal yield properties
uniquely decomposed in a symmetric tenker U, the right as well. It has been proposed by Northolt and Baltussen [14]
stretch tensor, and a rotatiéh that the yield of the fibre must be attributed to a local perma-
F—R( + U). 3) nent ghear deformation, i.e. a shgar .deformation of the
domain. A permanent deformation implies that after appli-
It is supposed that no pure rotation occurs, Re= T, cation of a certain stress the shape of the domain in the
with T a shifter that parallel transports vectors emanating unloaded state is changed. The undeformed domain is trans-
from X to vectors emanating from(X). In this case it holds ~ formed to a new domain with a new unloaded shape. Due to
that F} = (I + U)}. The relation between the deformation the plastic deformation the direction of the chain axis
gradientF and the orientation angle of the deformed domain changes permanently. It is assumed that the elastic proper-

is given by the equation ties of the permanently deformed domain, with respect to

1 the direction of the chain axis of the permanently deformed

tan(d — O) = F_g (4) domain, are equal to the elastic properties of the original
F3 domain.

The elastic properties of a domain are defined by the
relation between the elastic energyand the deformation.
For the analysis of the elastic extension of the fibre the form  The total deformation tensor of the domain is written as

2.2. The plastic deformation of a domain

1 kL the product of the elastic and the inelastic deformation
W= SE enaa ®) gradient
is chosen, withgj; =Uj; + UxUg; the Lagrangian or F=FcFp. ®)

material strain tensor. The stress—strain relation for this

e The elastic properties of the plastically deformed domain
energy function is given by

are characterized by the angie— A@,. The elastic part of

S =g (6) the deformation is described by the equations for the elastic
) ) deformation of a domain at an angte — A@®,,. Firstly the

with S the second Piola stress tensor plastic deformation of the domain will be considered.

Qv — J(Ffl)il(Ffl)jlo_ij. @ It is improbable that the plastic deformation of a domain

of a polymer fibre is pure shear deformation, because, in
J is the Jacobian of, and o the Cauchy stress. It is second order, pure shear deformation causes an extension of
supposed that the series assumption for the stress can béhe polymer chain as wells, = %U13U31. Therefore, the
applied. This is equivalent to the assumption that the stresspermanent deformation should be a simple shear deforma-
in the fibre is homogeneous and equal to the applied stresgion. In Fig. 3 a pure shear deformation is compared with a
os. Egs. (1), (2) and (6), in conjunction with the series simple shear deformation. It is noted that the simple shear
assumption, are the basic equations for the continuousdeformation in Fig. 3 is a combination of a pure deformation
chain model. In order to describe the yield properties of and a rotation. Next the Cauchy—Green deformation tensor
the fibre the stress—strain relation (6) is extended with a and the right stretch tensor associated to the simple shear
simple, semi-empiric yield condition. deformation are calculated.

¢ ()

8(3)

Fig. 2. Schematic drawing of the deformation.
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a - b For an elastic simple shear deformation we note ifaés

I 7 -7 equal to tarB, with B the shear angle, see Fig. 3. The angle

| ! / / B can be calculated from the directions of the unit veéfor
B/ / in the direction of the chain and the unit vectpperpendic-

I _’ 7 / ular to the chain after the deformation
/

B=38% -8, (12
Fig. 3. A pure shear deformation (a) compared with a simple shear defor- A N
magition (b)? In case of pure shear (th)e cha‘i)n is extended, ir? case of simpleWith 8(3) the angle betweefr(l 3) and F(I3) and 5(1) the
shear it is not. angle betweerm(l;) andF(l;) see Fig. 2. The definition
of ke can simply be generalized using Eq. (12) fBr
Consider an elastic deformatidh= T(I + U) with
First the simple shear deformation will be analysed. A

simple shear deformation is described by the deformation | +U= 1+Un Uss 13)
tensor Us; 14U |
Fo [ 1 O] o with Uy3 = Ug;. The angles® is given by
1 tans® = — 913 (14
The parametex is equal to the tangent of the shear angle 1+Uy
It is assumed that the permanent deformation is a pure gnqs® by
deformation, just like the elastic deformation. This implies
that no permanent rigid rotation of the domain occursFAs g0 s® = Uiz (15)

is not symmetric it can be decomposed into a rotation and a 1+ Uz
symmetric tensor describing the deformation. The
symmetric part of the decompositionefis the right stretch

tensorl + U which is equal to the square root of the right

Again the total shear angle is given lgy= 8® — 8@,
The valuex, for an elastic deformatioh + U is defined as

Cauchy—Green deformation tensor= F'F Ke = tanp. (16)
1+ &2 By this definitionk, is only a function of the pure defor-
= [ 1 ] (10 mation, because, can be expressed in the component€ of
K
_ o _ G .
The right stretch tensor is given by Ke = V22737 1n
1+ sir’ « sina with J the determinant of + U. By this definitionk, is
l+U=+C= CoSa , 11 independent of the change of the length of a line segment
sin o cosa parallel or perpendicular to the chain segment due to the
. deformation. It is assumed that, is a function ofk. — «,
with 2 tana = k. _ with «, the critical yield strain
As we assumed that permanent deformation of the
domain is simple shear deformation and that it is symmetric, kp = P({kel — Ky), (18

it is described by Eq. (11) witk = «,. Itis assumed that the
parameterk, is a function of the elastic deformation. So,
there is a relation betweety, and an appropriate stress or

strain measure describing the elastic deformation. In this lated in the second order of the componentslofThe

paper a relation betweek, and the components . is T L
o L second order approximation of Eq. (18) is given b
assumed. Further it is assumed that the plastic simple shear PP a.(18)is g y

deformation is only related to the elastic simple shear defor- «, = P(|2U45 — Ky). (19
mation of the domain. Up to a certain value of the elastic
deformation no plastic deformation occurs. Summarizing

with P a suitable function describing the yield properties of
a single domain. Analogous to the analysis of the elastic
deformation the equations for the yielding fibre are calcu-

The permanent deformation of the domain is given by

this results in two conditions: 1+ sir? ap _
—————  Sina
e Permanent shear deformation is a function of the compo- F,, = COSay . (20
nents of the right Cauchy—Green tensor of the elastic sinay, cosay

deformationCe.

¢ In the case of an elastic simple shear deformation with with 2 tana, = k. Due to the permanent deformation the
shear parametet, the plastic deformation is a simple orientation of the chain segment changes. The load free
shear deformation with,, which is only a function of orientation angle of the permanently deformed domain is
Ke — Ky, Wherek, is the critical yield strain. given by @, = @ + A@, Using Eq. (4) the rotation



J.J.M. Baltussen, M.G. Northolt / Polymer 40 (1999) 6113-6124 6117

0.03 . : . . . derived. The elastic strain of a fibre is given by
4 %= Toos
T (cos O)
\‘? i 2 i
o1{cosO[1 — sir® 6(1 + vy + 2c0S 02—9)])
0.02 X
[ :
+(cos6) — {cos @)] (23
0.01 . L L with the formula
0 0.004 0.008
rotational strain €, tan(6 — O)
Fig. 4. The strain of a PpPTA fibre vs. the orientation paramsief 6)e _ P120% .
measured by X-ray diffraction. Ot (1 e sz 0) sin 6 cos (24)
T g 1or .
29 [1 + = Zsire g+ Zsir? 6]
2¢ g

angleA®, follows from F, by
for the elastic rotation of the chain segment. The sonic
modulus of a fibre is given by the equation

1 1 1

= — 4+ —
Combination of Egs. (21) and (19) fax, yields for the E e  2g({cos6)
permanent rotation of the chain segment the formula

1
tanA@, = tanq, = K- (21

. 2 1 1
1—af5|rF(9[—V12 + o+ —]

e 2e
tanA@, = %P(|2U13| ~ xy). 22) ><<sin2 ecosa[ .. 1(,f — J
1+ — + ——si o
29 2e
The total deformation of the domain follows from the
product of the plastic deformatidh, and the elastic defor- 29(1 + v13) + 207(3 — v15)c0S 0 25
mationF of a domain under an angi@,. e '

As we assume that the elastic properties of the perma-

2.3. The stress vs. strain curve of a yielding fibre nently deformed domain are equal to the elastic properties
of the original domain, Egs. (23) and (25) for the strain and

In Ref. [12] a second order approximation for the elastic the sonic modulus can be used for the permanently
stress vs. strain curve of a fibre of linear polymer has beendeformed fibre. Eqg. (24) for the orientation angle of the
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Fig. 5. The birefringence vs. the strain of a collection of cellulose yarns measured by de Vries [16].
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b can be approximated by the simple equation

Fig. 6. A domain of a fibre showing continuous yield (a) compared with a
domain with slip planes (b).

1
Uy = — ot sin 6cos 6

3. The nature of yield

chain segment can be used as well using the new load free

orientation angléd, = @ + A@,instead of®. Substitution
of ® by 6O, in the left hand side of Eq. (24) yields

tan§ — @,) = tan(6 — @) — AO))

_ tan(0 — 6) —tanAB,
1+ tand— O)anAe,

(26)

In second order ob) Eq. (26) can be approximated by

tan((60 — O) — AB,)) = tan6 — O) — tanA B, (27)
Combination of Egs. (22), (24) and (27) vyields, for the
orientation angle of the yielding domain, the set of
equations

1
tan(6 — ©) = U3 + EP(|2U13| — Ky) (28
L ()
Uy~ — — 1 sin 6cos 6
1 . .
29 [1 + = Zsi g+ Zsir? 0]
2 (S g

For the quantitative description of the plastic shear of a
domain no physical model is available yet, therefore a
reasonable guess must be made. First some observations
about the yield are discussed. In the derivation of the equa-
tions for the fibre with yield it has been supposed that:

1. The deformation of the fibre with yield can be described
by the continuous chain model.

2. The yield of the fibre is due to simple shear deformation
of the domains.

3. All domains have equal yield properties. This implies
that the yield strain is a spatially homogeneous quantity,
which varies continuously as a function of the applied
stress and the initial load free orientation angle of the
chain segment.

The continuous chain model assumes that only shear
deformation and extension of the chain contribute to exten-
sion of the fibre. Because of the rigidity of the chains in the
domain the only possible permanent deformation of the
domain is a simple shear deformation of the domains. The
rotational strain of the fibre of the fibre is defined by [12]

ot _ (cos ) — (cosO)

€ (cosB) (30)

Erot = & —

Eqg. (30) shows that, according to the continuous chain

Eq. (28) in combination with Eq. (23), describes the stress model, the rotational strain should be a smooth function of

vs. strain curve of a yielding fibre, Eq. (28) in combination

the orientation distribution. Fig. 4 shows the orientation

with Eq (25) describes the sonic modulus vs. stress CUrVe.parameteKsinz 9>E measured by X_ray diffraction Vot
In case of highly oriented fibres and moderate stress Eq. (28)

0.15

" 1 L
0 0.05 0.10 0.15 0.20
Strain

Fig. 7. The stress vs. strain curve of an ideal plastic domain.
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Fig. 8. The stress vs. strain curve calculated with the ideal plastic yield
criterion compared with the stress vs. strain curve of the PpPTA fibre Al.
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Fig. 9. The deformation behaviour of the domain according to the proposed
plastic shear laws.

for a PpPTA fibre. In the yield region no different
behaviour is observed, which confirms the assumption

that a single deformation mechanism governs the defor-

mation below and above the yield point. De Vries
performed an extensive investigation into the birefrin-
gence of cellulose fibres during extension [16]. The
birefringence is linearly related to the orientation para-
meter(sin® ). His results, which are reproduced in Fig.
5, show that a linear relation is found between the
orientation parameter(sin2 0) and the strain for a

large collection of fibres with very different values for
the initial modulus. No abrupt change of the slope of
(sin? §) vs. the strain can be observed at the yield point

6119
2.0
observed calculated
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e
»
(%2}
o
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Strain Strain

Fig. 10. The observed stress strain curves (a) of three PpPTA fibres
compared with the calculated curves.

without packing coherence in the direction perpendicular to
the direction of the chain yield deformation may be more
homogeneous. The same holds for a semi-crystalline fibre
with amorphous regions. The macroscopic similarity of the
yield behaviour of amorphous, semi-crystalline and para-
crystalline fibres indicates that the yield process in all
these materials occurs in a similar way. However, the
discussion about the details of molecular processes during
yield deformation has not been finished yet. Argon and
coworkers showed that the plastic deformation of amor-
phous polymers is strongly hindered by the rigid chains in
the material [7]. He concludes that the restricted mobility of

in the range of 0.005-0.02 strain. These measurementsthe molecules makes the motion of dislocations far removed

also confirm that the deformation below and above the
yield stress is governed by shear deformation of the
domains.

The second assumption might be a simplification of the
yield process on molecular level. In polycrystalline materi-

from reality.

The second assumption excludes the occurrence of a
neck. In a neck strong localisation of plastic deformation
occurs. Without necking the plastic deformation will be
distributed homogeneously over the fibre.

als plastic deformation occurs along slip planes, so it hasa From these considerations it is concluded that the
discrete character. The mechanism for plastic deformation assumption, that all domains have equal yield properties,
is governed by dislocations in the material. The cases of may be a simplification of the yielding process, especially
homogeneous yield and yielding along slip planes have in the case of para-crystalline materials. However, the distri-
been depicted schematically in Fig. 6. Considering the para-bution of the discrete yield transformations at molecular

crystalline structure of PpPTA fibres, the plastic deforma- level is likely to be dense enough to justify the use of a

tion process is probably similar to plastic deformation in continuum model for the calculation of the stress vs. strain
polycrystalline materials. In fibres of an amorphous polymer curve of a yielding fibre. The value of the yield strain is the

average of the shear yield displacements in a small region.
From this description of the yield deformation it becomes

plausible that the elastic properties of the permanently
deformed domain are equal to the elastic properties of the
undeformed domain. In para-crystalline polymers and in the
crystalline regions of semi-crystalline polymers permanent

Table 1
The parameters for the calculated stress vs. strain curve

PPPTA PET

Domain parameters

deformation occurs along slip planes. The structure of the

g 1.8-2.4 GPa [13] 1.0-1.5GPa [13] _ _ . :

Ky 0.04-0.07 [14] 0.04-0.07 [14] domains does not change, neither do the elastic properties.

P Depends on the choice fér In amorphous polymers, or in the amorphous regions of

Orientation d'ét”bUt'O” A . A semi-crystalline polymers the lateral ordering is very poor,

b auss ne auss ne and will not be effected by plastic shear displacements very
arameters z A z A

much.
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Table 2

The parameters used for the calculation of the stress vs. strain curves of the PpPTA fibres

Fibre E, (GPa) e. (GPa} e (GPa) [13] vy, [13] Vi3 [13] g (GPa) Ky p Distribution
Al 71 220 5.5 0.65 0.3 2 0.06 3 Gauss
A2 89 220 5.5 0.65 0.3 2 0.06 3 Gauss
A3 124 220 55 0.65 0.3 2 0.06 3 Gauss

#Northolt and Sikkema [20], Barton [21]: 240 GPa.

4. The yield function P in Fig. 8. The calculated curve has been compared to the
observed stress vs. strain curve of the PpPTA fibre Al. The
A domain is symmetric with respect to reflection in a calculated curve shows the typical features of the experi-
plane perpendicular to the chain segment. As the yield func- mental curve, i.e. the initial elastic part, the yielding at about
tion P must have the same symmetry it holds thét ) = 0.005 strain continuing in a concave curve up to failure.
—P(ke). At the yield point the critical yield stress is However, it is obvious that the yield of the calculated
exceeded along certain slip planes, probably due to the fail- curve is much too large. This indicates that strain hardening
ure of secondary bonds. With respect to this yield process, aoccurs, and thus the yield resistance increases with increas-
simple model for the yield of a domain is ideal plastic beha- ing plastic deformation. Such a strain hardening is very
viour. This implies that above the critical yield straig all common in crystalline materials and can be due to limited
additional deformation is plastic. The corresponding stress mobility of dislocations [17].
vs. strain curve of the domain in simple shear has been For the modelling of the strain hardening two plastic
depicted in Fig. 7. For this “maximum elastic shear strain” shear laws will be studied. It should be emphasized that
plastic shear law, the functiddis multiple valued ak. = these plastic shear laws are phenomenological relations.
ky. Nevertheless this gives a stable solution for the stress vs.They are chosen because they describe the stress vs. strain
strain curve of the fibre. The plastic shear deformation curves rather successfully. The “linear” shear yield law
causes a decrease of the orientation arglend thus a  supposes that above the yield point, the resistance to yield-
decrease of the resolved shear stress on the domain. At ang increases linearly with the yield strain
certain value of the applied tensile stress the plastic shear 1
deformation is determined by the condition that the elastic tanA@, =0 Ugl = Sk
shear strain is exactly equal iq 2 ) 32

1 tanA @, = %p-(ZU13 + Kky)  |Ugg > %Ky
tan(d — @) = U;3 Uy < 5Ky
. 3D The parametep must be adjusted for each curve dug is

Ups = tixy else ;upposed t.o be negatlv_e again. It will be shqu that the

2 linear plastic shear law is useful for the description of the

stress vs. strain curves of PpPTA fibres. For the stress vs.

strain curves of PET fibres a good agreement with the

experimental curve can be achieved by a “square root”
shear yield law

U,z is given by Eq. (28). If a tensile stress is applied to the
fibre U3 will be negative. The calculated stress vs. strain
curve according to this very simple formula has been drawn

3 T 1
I,' tanA@p =0 |U13| = E Ky
V4 X L (33
,,'/;"' tanA@p == Ep'1[_2U13 - Ky |U13| > E Ky
~ 2F e
o 2 The plastic shear law defines the deformation behaviour
O . . . K .
Py 2 of the domain. In Fig. 9 the deformation of the domain has
o been drawn for the three yield criteria.
n 1F
——PpPTA fibre A1 . i
....... linear plastic shear law 5. Results and discussion
----- square root plastic shear law
0 L 5.1. The stress vs. strain curve

L 1 1 L 1 n
0 0.01 0.02 0.03 0.04
Strain For a realistic comparison of the calculated stress vs.
Fig. 11. The square root plastic law compared with the linear plastic shear Strain curves with the experimental curves the parameters

law for the PpPTA fibre A1l. for the calculated curve must be chosen carefully. In Table 1
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From Fig. 10 it can be concluded that the linear plastic
shear law gives a satisfactory description of the stress vs.
strain curves of the tested aramid fibres. For higher tensions
the observed strain tends to be higher than the calculated
strain. This can be due to several causes, the most important
ones have been identified in Ref. [13]. Especially at high
tensile stress there will be a small contribution of chain slip
to the total extension or the fibre, in addition to the shear
deformation of the domains. At high tensile stress also the
quadratic form for the stored energy function will be too
simple an approximation for the description of the elastic
response of the fibre. In Fig. 11 the linear plastic shear law is
compared with the square root plastic shear law. For the
curve calculated according to the square root plastic shear

Fig. 12. The experimental stress vs. strain curve of the PpPTA fibre 1125T law a value ofp = 0.6 was used. Although the differences
compared with the calculated curves using the linear and the square rootgre rather small it can be concluded that the linear plastic
plastic shear laws. shear law gives a better fit to the observed stress vs. strain
curve.
the adjustable parameters are listed together with the pos- For the PET fibre Diolen 1125T the linear plastic shear
sible choices for PpPTA and PET fibres. law has been compared with the square root plastic shear
In addition to the mechanical parameters characterizing law as well. The result has been plotted in Fig. 12. The
the domain, the orientation distribution of the fibre has a parameters used for the calculated curves have been listed
large influence on the stress vs. strain curve of the fibre. Thein Table 3.
Gaussian distribution is given by The main characteristics of the experimental curves can
, be reproduced by using the linear plastic shear law, but
p(0) = ex;{ - sin” © ] examination of the yield region demonstrates that the linear
z plastic shear law does not describe the characteristic “dip”
A Gaussian distribution can be expected if the orientation
distribution is due to a thermodynamic equilibrium, e.g. in

just above the yield point. This typical feature of the stress
vs. strain curve of PET fibres is reproduced better by the
case of highly oriented aramid fibres [18]. An affine distri-
bution, which is given by

(34

square root plastic shear law. From this result it can be
concluded that the strain hardening in highly oriented
PpPTA fibres initiates immediately above the yield point,
A2 32 while in oriented PET fibres the strain hardening begins

p(6) = (0052 R @) only after a certain plastic shear deformation, see Fig. 9.

Apparently the less oriented and less crystalline domains

can be expected from a non-equilibrium drawing process, in PET fibres yield more easily than the para-crystalline
such as a neck occurring in the high speed spinning procesglomains of the aramid fibres.
for PET fibres [14,19].

Stress vs. strain curves using the linear plastic shear law,5 2 The stress vs. strain and sonic modulus vs. strain curves
see Eq. (32), were calculated for a set of aramid fibres. The
experimental curves are plotted in Fig. 10(a) and the calcu- In the previous section the calculated stress vs. strain
lated curves have been plotted in Fig. 10(b). The shearcurve has been compared with the experimental curves.
modulusg is the average value calculated from the modulus With Egs. (23)—(25) the strain and the sonic modulus as a
vs. the strain curves of PpPTA fibres, using the technique function of the applied stress can be calculated for a single
described in Ref. [11]. The yield straik, and the yield fibre. In this section these equations are fitted simul-
parametep are determined by comparison with the experi- taneously to both the sonic modulus vs. strain curve and
mental stress vs. strain curves. The complete set of parathe stress vs. strain curve of a selection of PpPTA and
meters used for the calculated curves is given in Table 2. PET fibres. The yield of PpPTA fibres is described by the

(39

Table 3
The parameters which have been used for the calculation of the stress vs. strain curve strain of the PET fibre Diolen 1125T using the linear anddbhe square
plastic shear law

Shear law E, (GPa) e (GPa) [13] e, (GPa) [13] vy, [13] Vi3 [13] g (GPa) Ky p Distribution
Lin. 14 125 3 0.65 0.3 1.1 0.05 35 affine
Sq. rt. 16 125 3 0.65 0.3 11 0.054 11 affine
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Fig. 13. The simultaneous fit of (a) the stress vs. strain and (b) the modulus vs. strain curve of the PpPTA fibre Twaron 1000.

linear plastic shear law and the yield of PET fibres is strain curve. For PET fibres the initial modulus of the stress
described by the square root plastic shear law. vs. strain curve is somewhat lower, which is probably due to
Before explaining the fit procedure the number of inde- the larger viscoelasticity of these fibres. Therefore the stress
pendent parameters is discussed. Using a single parametevs. strain curve is described with the help of a shear modulus
orientation distribution, like a Gaussian or an affine distri- g, which is slightly lower than the shear modulg®f the
bution, the number of adjustable parameters in the equationssonic modulus vs. strain curve. In formula (28) for the orien-
is four, i.e.g, (zor A), ky andp. These four parameters are tation angleé of the chain segment, the valgg, is used,
linked to four independent features of the stress vs. strainbecause the value af determines the value of the calcu-
curve. The shear modulug in combination withz or A lated strain, see EqQ. (23). In formula (25) for the sonic
determine the sonic modulus and the slope of the sonic modulus the sonic valug is used. With constant values
modulus vs. the strain curve. The yield point parameter  for g and z calculated from the sonic modulus vs. strain
is uniquely determined by the yield point apdietermines curve, the values of the paramet@rsc, andg, are deter-
the depth of the yield. As these are independent features ofmined from the stress vs. strain curve. The final values for
the stress vs. strain curve, four variables is the minimum the shear modulus andare obtained by fitting the sonic
number necessary to fit these four features of the experi-modulus vs. stress curve, with the value of the sonic modu-
mental curves. If an experimental value for the width of the lus as a constraint.
orientation distribution is available, e.g. calculated from the  The sonic modulus and the strain of a Twaron 1000 yarn
birefringence of the fibre, a fifth experimental variable is have been fitted using a Gaussian orientation distribution.
available and thus five independent parameters can be deterThe results are presented in Fig. 13 and the parameters
mined. In this case the shape of the orientation distribution derived from the fit procedure are listed in Table 4.
can be fitted with, for example, a Pearson VIl function [22].  The low value ofg,, is due to fact that the modulus of the
For the description of the sonic modulus and the strain as astress vs. strain curve of a bundle is always somewhat lower
function of the stress of these fibres only a Gaussian or anthan the modulus of the individual filaments or the sonic
affine orientation distribution will be used. modulus. The measurement was performed on a bundle
The initial value for the shear modulgsand the widthz because the sonic modulus cannot be accurately measured
of the orientation distribution are determined from the sonic on single filaments.
modulus vs. strain curve using the method described in Ref. The sonic modulus and strain of Diolen 1125T were
[13]. In the case of aramid fibres, the sonic modulus at zero fit by using an affine orientation distribution. For the fit of
stress is almost equal to the initial modulus of the stress vs.the sonic modulus and strain of Diolen 147S a Gaussian

Table 4

The parameters used for the calculation of the sonic modulus and the strain as a function of the stress of the Twaron 1000 fibre

Fibre E, (GPa) g (GPa) gm (GPa) Ky p z (sir? 6) (sir? 6)
Eson— € X-ray

Twaron 1000 91.6 2.0 1.42 0.057 17 0.16 0.0263 0.024
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Fig. 14. The simultaneous fit of (a) the stress vs. strain and (b) the modulus vs. strain curve of the PET fibre Diolen 1125T.

orientation distribution was used. The calculated curves areboth PET fibres have the same value fsin 6). The
compared with the experimental ones in Figs. 14 and 15. errors on the values ofsin® 8) determined by the fit
The parameters used for the calculated curves have beemprocedure are not known very well because not all para-
listed in Table 5. meters were varied simultaneously, and because no
Figs. 13—15 show that the curves of sonic modulus and statistical data from a large number of experiments is avail-
strain vs. applied tensile stress of both PpPTA and PET able. The estimated error is in the order of 5%. So it can be
fibres can be described simultaneously by the proposedconcluded that, also for the PET fibres, the values for
equations for fibres with yield. A value for the widthof (sin? #) calculated from the mechanical data are in good
the orientation distribution was determined by fitting these agreement with the values calculated from the birefringence
curves. Using this value the orientation parameters can beof the yarn.
calculated. In Table 3 the value f¢in? #) determined by In conclusion it has been demonstrated that the essential
the fit of the mechanical data of the Twaron 1000 fibre features of the observed tensile curve and the sonic modulus
has been compared with the value measured by X-rayduring tensile extension can be described by the use of the
diffraction. A good agreement between the two values continuous chain model in combination with a simple plas-
has been found. It results from their birefringence that tic shear law for plastic deformation of the domain.
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Fig. 15. The simultaneous fit of (a) the stress vs. strain and (b) the modulus vs. strain curve of the PET fibre Diolen 174T.
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Table 5
The parameters used for the calculation of the sonic modulus and the strain as a function of the stress of the PET fibres. Thésivalagfonas been
calculated using a value of 0.25 for the maximum valuépf

Fibre E, (GPa) g (GPa) gn (GPa) Ky p (sir? O)e (sir? 6) (sir? B)an
Eson— ¢ Eson— ¢

Diolen 174S 14 1.2 1.0 0.049 2.3 0.1641 0.192 0.186

Diolen 1125T 17 1.1 1.0 0.054 1.1 0.1217 0.185 0.186
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