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Abstract

The stress vs. strain curve with yield and the sonic modulus vs. strain curve of fibres of linear polymers below the glass transition
temperaturearemodelled by thecontinuouschain model in combination with asimpleyield model. It issupposed that yield of polymer fibres
is due to shear deformation of the domains. The yield model is based on a critical shear yield strain. A good agreement between the
experimental tensile and sonic modulus vs. strain curves and the theoretical curves has been obtained for a selection of poly(p-phenylene
terephthalamide) and poly(ethylene terephthalate) fibres. q 1999 Elsevier Science Ltd. Al l rights reserved.
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1 . Introduction

The stress vs. strain curve of polymer fibres below their
glass transition temperature is characterised by a more or
less pronounced yield at about 0.005–0.025 strain. Some
typical stress vs. strain curves have been depicted in Fig.
1. Below the yield point the deformation of the fibre is
almost elastic. Above the yield point the deformation of
the fibre is partly permanent. In the classical theory, yield
isdescribed by ayield criterion. In itsmost general form the
yield criterion isa function of all componentsof theapplied
stress, which reaches a critical value at the onset of yield of
the material. Originally this yield theory was developed for
the description of the yield of crystall ine materials like
metals. Although the yield behaviour of polymers depends
on the temperature and the time scale of the deformation,
Ward showed that the classical ideas of plasticity are rele-
vant to the yield of polymers as well [1]. Underlining the
common features of the yield of polymers, he remarks that
thesameyield behaviour can befound for all polymer mate-
rials, independently of their chemical nature and physical
structure. Above the yield point slip bands and kink bands
have been observed for both polymer and crystall ine
materials which is an indication for the similarity of the
yield processes in polymer and crystall ine materials on a

mesoscopic scale. For crystall ine materials it is generally
accepted that on amolecular scale theplastic deformation is
due to motion of dislocations. For crystall ine polymers, in
particular for highly crystalline polyethylene, it has been
shown that plastic deformation can be explained by motion
of dislocations as well [2–5]. Mott and Argon argue that in
case of amorphous polymers the deformation mechanism
may be more complicated [6,7]. However, the similarity
of the yield of polymersand crystalline materials on macro-
scopic and mesoscopic level justifies the use of the same
phenomenological continuum theory for the modelling of
the stress vs. strain behaviour of polymer fibres.

A simple criterion for the yield of isotropic polymers is
the Tresca yield criterion, which states that yield occurs
when the maximum shear stress reaches a critical value
[8]. The Coulomb yield criterion supposes that the critical
shear yield stress is a linearly increasing function of the
stress normal to the shear plane [9]. Another well-known
yield criterion is the von Mises yield criterion which relates
the occurrence of yield to a critical value of the second
invariant of the deviatoric stress tensor [10]. The logical
extension of the Tresca yield criterion for anisotropic mate-
rials is the resolved shear-stress law of Schmid [11]. This
yield criterion states that yield occurs when the resolved
shear stress in a slip direction reaches a critical value, i.e.
the direction of the shear deformation is determined by the
structure of the material. On a microscopic scale polymers
are not isotropic at all. Due to the presence of the covalent
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chains, the local mechanical properties are highly anisotro-
pic. Young proposed a critical resolved shear stress model
for the yield of highly oriented polyethylene [4,5]. With this
model he explained the results of compression experiments
in which the angle between the chain orientation and the
compression direction was about 458.

The elastic deformation of polymer fibres has been
described previously by the continuous chain model
[12,13]. It has been shown in Ref. [12] that the curve of
the elastic or sonic modulus vs. the strain can be described
by the continuous chain model below and above the yield
point, which implies that the same mechanism governs the
deformation above and below the yield point. The contin-
uous chain model for the elastic deformation of polymer
fibres describes the deformation of the fibre as the average
deformation of small perfectly oriented domains. It shows
that only the extension of the chain and the shear of adjacent
chains contribute to the tensile deformation of the fibre. This
description of the deformation of a fibre suggests that the
position of the yield point can be understood from Schmid’s
law for the resolved shear yield stress applied in the system
of local symmetry. At a critical value of the resolved shear
stress, local debonding of the secondary bonds between
adjacent chains occurs, resulting in a permanent displace-
ment of adjacent polymer chains and thus a permanent shear
deformation of the domain. It has been shown by Northolt
and Baltussen that the yield strain predicted by this yield
criterion agrees well with the experimentally determined
yield strain of polymer fibres and sheets. In particular it
explains the position of the yield point as a function of the
orientation parameter [14]. This model for the yield empha-
sizes once more the essential role of the orientation distribu-
tion in the mechanical properties of polymers. From the
analysis of the compression strength of polymer fibres it
results that the yield strain in compression is approximately
equal to the yield strain in extension. The continuous chain
model can not be used for the calculation of the yield point
of oriented polymers at an arbitrary stress. It is only valid if
the deformation is determined by average projection length
of the polymer chains. So, the applied stress should be in the

direction of the average orientation, or at a small angle with
this direction. For example it does not predict the yield point
for a stress perpendicular to the axis of an oriented fibre.

In this article it will be shown that the stress vs. strain
curve and the modulus vs. strain curve of polymer fibres can
be described by the continuous chain model in combination
with a simple yield assumption based on a critical shear
yield strain. First the theory for the deformation of a yield-
ing fibre is developed. It will be shown that the plastic
deformation of a domain is a simple shear deformation. It
is proposed that the plastic shear deformation is a function
of the elastic shear deformation. Next the nature of the yield
and the applicability of the continuous chain model is
studied. Finally the functional dependence of the plastic
deformation is examined and the calculated curves
compared with the observed curves of poly(ethylene
terephthalate) (PET) and poly(p-phenylene terephthala-
mide) (PpPTA) fibres. In the last section it will be shown
that the stress vs. strain curve and the sonic modulus vs.
strain curve can be described simultaneously by the equa-
tions for the yielding fibre. Preliminary results of this model
have been published earlier [15].

2. Theory of the deformation of a yielding fibre

2.1. Introduction

It is supposed that the deformation of a fibre is composed
of an elastic and a permanent contribution which can be
both reduced to the local elastic and permanent deformation.
For the description of the deformation of the fibre the
continuous chain model is used. The continuous chain
model has been described in Refs. [12,13]; a summary of
the model is given next. The fibre consists of long and
continuous chains which do not break during the deforma-
tion. Along the chain small linear segments of equal length
are considered. The angle between the undeformed chain
segment and the fibre axis is denoted byQ , after a deforma-
tion the angle is denoted byu . The orientation distribution
of Q is described by the distribution functionr (Q ). The
immediate surroundings of a segment is a domain. All the
domains` have equal mechanical properties. The projec-
tion length of a chain is the length of the chain along the
fibre axis. The fibre strain is equal to the average relative
increase of the projection length. The projection length of a
chain at a fibre stresss f is given by

L � Lc �1 1 1c�Q;sf ��cosu�Q;sf �h i: �1�
and thus the fibre strain by

1f � L 2 L0

L0
: �2�

In order to incorporate the yield in the theory for the
elastic extension of polymer fibres several concepts from
the continuum mechanics will be introduced. The
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Fig. 1. Typical stress vs. strain curves of two PET fibres.



deformation is described by the mappingw , a schematic
drawing ofw is presented in Fig. 2. The deformation gradi-
ent ofw is denoted byF. The deformation gradientF can be
uniquely decomposed in a symmetric tensorI 1 U, the right
stretch tensor, and a rotationR

F � R�I 1 U�: �3�
It is supposed that no pure rotation occurs, i.e.R � T,

with T a shifter that parallel transports vectors emanating
from X to vectors emanating fromw (X). In this case it holds
that Fi

J � �I 1 U�iJ: The relation between the deformation
gradientF and the orientation angle of the deformed domain
is given by the equation

tan�u 2 Q� � F1
3

F3
3

: �4�

The elastic properties of a domain are defined by the
relation between the elastic energyW and the deformation.
For the analysis of the elastic extension of the fibre the form

W � 1
2

EIJKL1IJ1KL �5�

is chosen, with1IJ � UIJ 1 UIK UKJ the Lagrangian or
material strain tensor. The stress–strain relation for this
energy function is given by

SIJ � EIJKL1KL: �6�
with S the second Piola stress tensor

SIJ � J�F21�Ii �F21�Jj sij
: �7�

J is the Jacobian ofF, and s the Cauchy stress. It is
supposed that the series assumption for the stress can be
applied. This is equivalent to the assumption that the stress
in the fibre is homogeneous and equal to the applied stress
s f. Eqs. (1), (2) and (6), in conjunction with the series
assumption, are the basic equations for the continuous
chain model. In order to describe the yield properties of
the fibre the stress–strain relation (6) is extended with a
simple, semi-empiric yield condition.

For the description of the stress vs. strain curve of the
fibre including yield it is supposed that all domains, in addi-
tion to equal elastic properties, have equal yield properties
as well. It has been proposed by Northolt and Baltussen [14]
that the yield of the fibre must be attributed to a local perma-
nent shear deformation, i.e. a shear deformation of the
domain. A permanent deformation implies that after appli-
cation of a certain stress the shape of the domain in the
unloaded state is changed. The undeformed domain is trans-
formed to a new domain with a new unloaded shape. Due to
the plastic deformation the direction of the chain axis
changes permanently. It is assumed that the elastic proper-
ties of the permanently deformed domain, with respect to
the direction of the chain axis of the permanently deformed
domain, are equal to the elastic properties of the original
domain.

2.2. The plastic deformation of a domain

The total deformation tensor of the domain is written as
the product of the elastic and the inelastic deformation
gradient

F � FeFp: �8�
The elastic properties of the plastically deformed domain

are characterized by the angleQ 2 DQp. The elastic part of
the deformation is described by the equations for the elastic
deformation of a domain at an angleQ 2 DQp. Firstly the
plastic deformation of the domain will be considered.

It is improbable that the plastic deformation of a domain
of a polymer fibre is pure shear deformation, because, in
second order, pure shear deformation causes an extension of
the polymer chain as well:1c � 1

2 U13U31: Therefore, the
permanent deformation should be a simple shear deforma-
tion. In Fig. 3 a pure shear deformation is compared with a
simple shear deformation. It is noted that the simple shear
deformation in Fig. 3 is a combination of a pure deformation
and a rotation. Next the Cauchy–Green deformation tensor
and the right stretch tensor associated to the simple shear
deformation are calculated.
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Fig. 2. Schematic drawing of the deformation.



First the simple shear deformation will be analysed. A
simple shear deformation is described by the deformation
tensor

F �
1 0

k 1

" #
: �9�

The parameterk is equal to the tangent of the shear angleb .
It is assumed that the permanent deformation is a pure
deformation, just like the elastic deformation. This implies
that no permanent rigid rotation of the domain occurs. AsF
is not symmetric it can be decomposed into a rotation and a
symmetric tensor describing the deformation. The
symmetric part of the decomposition ofF is the right stretch
tensorI 1 U which is equal to the square root of the right
Cauchy–Green deformation tensorC � FTF

C � 1 1 k2 k

k 1

" #
: �10�

The right stretch tensor is given by

I 1 U � ���
C
p �

1 1 sin2 a

cosa
sina

sina cosa

264
375; �11�

with 2 tana � k .
As we assumed that permanent deformation of the

domain is simple shear deformation and that it is symmetric,
it is described by Eq. (11) withk � kp. It is assumed that the
parameterkp is a function of the elastic deformation. So,
there is a relation betweenkp and an appropriate stress or
strain measure describing the elastic deformation. In this
paper a relation betweenkp and the components ofCe is
assumed. Further it is assumed that the plastic simple shear
deformation is only related to the elastic simple shear defor-
mation of the domain. Up to a certain value of the elastic
deformation no plastic deformation occurs. Summarizing
this results in two conditions:

• Permanent shear deformation is a function of the compo-
nents of the right Cauchy–Green tensor of the elastic
deformationCe.

• In the case of an elastic simple shear deformation with
shear parameterke the plastic deformation is a simple
shear deformation withkp, which is only a function of
ke 2 k y, wherek y is the critical yield strain.

For an elastic simple shear deformation we note thatke is
equal to tanb , with b the shear angle, see Fig. 3. The angle
b can be calculated from the directions of the unit vectorı̂3
in the direction of the chain and the unit vectorı̂1 perpendic-
ular to the chain after the deformation

b � d�3� 2 d�1�; �12�
with d (3) the angle betweenT�Î 3� and F�Î 3� and d (1) the
angle betweenT�Î 1� and F�Î 1� see Fig. 2. The definition
of ke can simply be generalized using Eq. (12) forb .
Consider an elastic deformationF � T(I 1 U) with

I 1 U �
1 1 U11 U13

U31 1 1 U33

" #
; �13�

with U13� U31. The angled (1) is given by

tand�1� � 2
U13

1 1 U11
�14�

andd (3) by

tand�3� � U13

1 1 U33
: �15�

Again the total shear angle is given byb � d (3) 2 d (1).
The valueke for an elastic deformationI 1 U is defined as

ke � tanb: �16�
By this definitionke is only a function of the pure defor-

mation, becauseke can be expressed in the components ofC

ke �
�����
C22

p C13

J
; �17�

with J the determinant ofI 1 U. By this definitionke is
independent of the change of the length of a line segment
parallel or perpendicular to the chain segment due to the
deformation. It is assumed thatkp is a function ofke 2 k y

with k y the critical yield strain

kp � P�ukeu 2 ky�; �18�
with P a suitable function describing the yield properties of
a single domain. Analogous to the analysis of the elastic
deformation the equations for the yielding fibre are calcu-
lated in the second order of the components ofU. The
second order approximation of Eq. (18) is given by

kp < P�u2U13u 2 ky�: �19�
The permanent deformation of the domain is given by

Fp �
1 1 sin2 ap

cosap
sinap

sinap cosap

2664
3775; �20�

with 2 tanap � kp. Due to the permanent deformation the
orientation of the chain segment changes. The load free
orientation angle of the permanently deformed domain is
given by Qp � Q 1 DQp. Using Eq. (4) the rotation
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Fig. 3. A pure shear deformation (a) compared with a simple shear defor-
mation (b). In case of pure shear the chain is extended, in case of simple
shear it is not.



angleDQ p follows from Fp by

tanDQp � tanap � 1
2
kp: �21�

Combination of Eqs. (21) and (19) forkp yields for the
permanent rotation of the chain segment the formula

tanDQp � 1
2

P u2U13u 2 ky

� �
: �22�

The total deformation of the domain follows from the
product of the plastic deformationFp and the elastic defor-
mationFe of a domain under an angleQp.

2.3. The stress vs. strain curve of a yielding fibre

In Ref. [12] a second order approximation for the elastic
stress vs. strain curve of a fibre of linear polymer has been

derived. The elastic strain of a fibre is given by

1f � 1
kcosQl

�
" sf kcosu�1 2 sin2 u�1 1 n13 1 2cos2 u

sf

2g
��i

ec

1kcosul 2 kcosQl

#
�23�

with the formula

tan�u 2 Q�

� 2
sf

2g

1 2
n12sf

e1
sin2 u

� �
1 1

1
2

sf

e1
sin2 u 1

sf

g
sin2 u

� � sinu cosu
�24�

for the elastic rotation of the chain segment. The sonic
modulus of a fibre is given by the equation

1
Ef
� 1

ec
1

1
2gkcosul

�
*

sin2 ucosu

" 1 2 sf sin2 u

"
2n12

e1
1

1
2e1

1
1
g

#
1 1

sf

2g
1

sf

2e1
sin2 u

2
2g�1 1 n13�1 2sf �3 2 n13�cos2 u

ec

#+
: �25�

As we assume that the elastic properties of the perma-
nently deformed domain are equal to the elastic properties
of the original domain, Eqs. (23) and (25) for the strain and
the sonic modulus can be used for the permanently
deformed fibre. Eq. (24) for the orientation angle of the
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Fig. 4. The strain of a PpPTA fibre vs. the orientation parameterksin2 ulE

measured by X-ray diffraction.

Fig. 5. The birefringence vs. the strain of a collection of cellulose yarns measured by de Vries [16].



chain segment can be used as well using the new load free
orientation angleQp�Q 1 DQp instead ofQ . Substitution
of Q by Q p in the left hand side of Eq. (24) yields

tan�u 2 Qp� � tan��u 2 Q�2 DQ��

� tan�u 2 Q�2 tanDQp

1 1 tan�u 2 Q�tanDQp
�26�

In second order ofU Eq. (26) can be approximated by

tan��u 2 Q�2 DQp�� � tan�u 2 Q�2 tanDQp �27�

Combination of Eqs. (22), (24) and (27) yields, for the
orientation angle of the yielding domain, the set of
equations

tan�u 2 Q� < U13 1
1
2

P�u2U13u 2 ky� �28�

U13 < 2
sf

2g

1 2 n12sf

e1
sin2 u

� �
1 1

1
2
sf

e1
sin2 u 1

sf

g
sin2 u

� � sinucosu

Eq. (28) in combination with Eq. (23), describes the stress
vs. strain curve of a yielding fibre, Eq. (28) in combination
with Eq. (25) describes the sonic modulus vs. stress curve.
In case of highly oriented fibres and moderate stress Eq. (28)

can be approximated by the simple equation

tan�u 2 Q� < U13 1
1
2

P�u2U13u 2 ky� �29�

U13 < 2
sf

2g
sinucosu:

3. The nature of yield

For the quantitative description of the plastic shear of a
domain no physical model is available yet, therefore a
reasonable guess must be made. First some observations
about the yield are discussed. In the derivation of the equa-
tions for the fibre with yield it has been supposed that:

1. The deformation of the fibre with yield can be described
by the continuous chain model.

2. The yield of the fibre is due to simple shear deformation
of the domains.

3. All domains have equal yield properties. This implies
that the yield strain is a spatially homogeneous quantity,
which varies continuously as a function of the applied
stress and the initial load free orientation angle of the
chain segment.

The continuous chain model assumes that only shear
deformation and extension of the chain contribute to exten-
sion of the fibre. Because of the rigidity of the chains in the
domain the only possible permanent deformation of the
domain is a simple shear deformation of the domains. The
rotational strain of the fibre of the fibre is defined by [12]

1rot � 1f 2
sf

ec
<

kcosul 2 kcosQl
kcosQl

: �30�

Eq. (30) shows that, according to the continuous chain
model, the rotational strain should be a smooth function of
the orientation distribution. Fig. 4 shows the orientation
parameterksin2 u lE measured by X-ray diffraction vs.e rot
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Fig. 6. A domain of a fibre showing continuous yield (a) compared with a
domain with slip planes (b).

Fig. 7. The stress vs. strain curve of an ideal plastic domain.
Fig. 8. The stress vs. strain curve calculated with the ideal plastic yield
criterion compared with the stress vs. strain curve of the PpPTA fibre A1.



for a PpPTA fibre. In the yield region no different
behaviour is observed, which confirms the assumption
that a single deformation mechanism governs the defor-
mation below and above the yield point. De Vries
performed an extensive investigation into the birefrin-
gence of cellulose fibres during extension [16]. The
birefringence is linearly related to the orientation para-
meter ksin2 u l. His results, which are reproduced in Fig.
5, show that a linear relation is found between the
orientation parameterksin2 u l and the strain for a
large collection of fibres with very different values for
the initial modulus. No abrupt change of the slope of
ksin2 u l vs. the strain can be observed at the yield point
in the range of 0.005–0.02 strain. These measurements
also confirm that the deformation below and above the
yield stress is governed by shear deformation of the
domains.

The second assumption might be a simplification of the
yield process on molecular level. In polycrystalline materi-
als plastic deformation occurs along slip planes, so it has a
discrete character. The mechanism for plastic deformation
is governed by dislocations in the material. The cases of
homogeneous yield and yielding along slip planes have
been depicted schematically in Fig. 6. Considering the para-
crystalline structure of PpPTA fibres, the plastic deforma-
tion process is probably similar to plastic deformation in
polycrystalline materials. In fibres of an amorphous polymer

without packing coherence in the direction perpendicular to
the direction of the chain yield deformation may be more
homogeneous. The same holds for a semi-crystalline fibre
with amorphous regions. The macroscopic similarity of the
yield behaviour of amorphous, semi-crystalline and para-
crystalline fibres indicates that the yield process in all
these materials occurs in a similar way. However, the
discussion about the details of molecular processes during
yield deformation has not been finished yet. Argon and
coworkers showed that the plastic deformation of amor-
phous polymers is strongly hindered by the rigid chains in
the material [7]. He concludes that the restricted mobility of
the molecules makes the motion of dislocations far removed
from reality.

The second assumption excludes the occurrence of a
neck. In a neck strong localisation of plastic deformation
occurs. Without necking the plastic deformation will be
distributed homogeneously over the fibre.

From these considerations it is concluded that the
assumption, that all domains have equal yield properties,
may be a simplification of the yielding process, especially
in the case of para-crystalline materials. However, the distri-
bution of the discrete yield transformations at molecular
level is likely to be dense enough to justify the use of a
continuum model for the calculation of the stress vs. strain
curve of a yielding fibre. The value of the yield strain is the
average of the shear yield displacements in a small region.
From this description of the yield deformation it becomes
plausible that the elastic properties of the permanently
deformed domain are equal to the elastic properties of the
undeformed domain. In para-crystalline polymers and in the
crystalline regions of semi-crystalline polymers permanent
deformation occurs along slip planes. The structure of the
domains does not change, neither do the elastic properties.
In amorphous polymers, or in the amorphous regions of
semi-crystalline polymers the lateral ordering is very poor,
and will not be effected by plastic shear displacements very
much.

J.J.M. Baltussen, M.G. Northolt / Polymer 40 (1999) 6113–6124 6119

Fig. 9. The deformation behaviour of the domain according to the proposed
plastic shear laws. Fig. 10. The observed stress strain curves (a) of three PpPTA fibres

compared with the calculated curves.

Table 1
The parameters for the calculated stress vs. strain curve

PpPTA PET

Domain parameters
g 1.8–2.4 GPa [13] 1.0–1.5 GPa [13]
ky 0.04–0.07 [14] 0.04–0.07 [14]
p Depends on the choice forP
Orientation distribution

Gauss Affine Gauss Affine
Parameters z l z l



4. The yield function P

A domain is symmetric with respect to reflection in a
plane perpendicular to the chain segment. As the yield func-
tion P must have the same symmetry it holds thatP(2ke)�
2P(ke). At the yield point the critical yield stress is
exceeded along certain slip planes, probably due to the fail-
ure of secondary bonds. With respect to this yield process, a
simple model for the yield of a domain is ideal plastic beha-
viour. This implies that above the critical yield straink y all
additional deformation is plastic. The corresponding stress
vs. strain curve of the domain in simple shear has been
depicted in Fig. 7. For this “maximum elastic shear strain”
plastic shear law, the functionP is multiple valued atke�
k y. Nevertheless this gives a stable solution for the stress vs.
strain curve of the fibre. The plastic shear deformation
causes a decrease of the orientation angleu and thus a
decrease of the resolved shear stress on the domain. At a
certain value of the applied tensile stress the plastic shear
deformation is determined by the condition that the elastic
shear strain is exactly equal tok y

tan�u 2 Q� � U13 uU13u ,
1
2
ky

U13 � ^
1
2
ky else

: �31�

U13 is given by Eq. (28). If a tensile stress is applied to the
fibre U13 will be negative. The calculated stress vs. strain
curve according to this very simple formula has been drawn

in Fig. 8. The calculated curve has been compared to the
observed stress vs. strain curve of the PpPTA fibre A1. The
calculated curve shows the typical features of the experi-
mental curve, i.e. the initial elastic part, the yielding at about
0.005 strain continuing in a concave curve up to failure.
However, it is obvious that the yield of the calculated
curve is much too large. This indicates that strain hardening
occurs, and thus the yield resistance increases with increas-
ing plastic deformation. Such a strain hardening is very
common in crystalline materials and can be due to limited
mobility of dislocations [17].

For the modelling of the strain hardening two plastic
shear laws will be studied. It should be emphasized that
these plastic shear laws are phenomenological relations.
They are chosen because they describe the stress vs. strain
curves rather successfully. The “linear” shear yield law
supposes that above the yield point, the resistance to yield-
ing increases linearly with the yield strain

tanDQp � 0 uU13u #
1
2
ky

tanDQp � 1
2

p·�2U13 1 ky� uU13u .
1
2
ky

: �32�

The parameterp must be adjusted for each curve andU13 is
supposed to be negative again. It will be shown that the
linear plastic shear law is useful for the description of the
stress vs. strain curves of PpPTA fibres. For the stress vs.
strain curves of PET fibres a good agreement with the
experimental curve can be achieved by a “square root”
shear yield law

tanDQp � 0 uU13u #
1
2
ky

tanDQp � 1
2

p·
����������������
22U13 2 ky

q
uU13u .

1
2
ky

: �33�

The plastic shear law defines the deformation behaviour
of the domain. In Fig. 9 the deformation of the domain has
been drawn for the three yield criteria.

5. Results and discussion

5.1. The stress vs. strain curve

For a realistic comparison of the calculated stress vs.
strain curves with the experimental curves the parameters
for the calculated curve must be chosen carefully. In Table 1
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Table 2
The parameters used for the calculation of the stress vs. strain curves of the PpPTA fibres

Fibre E0 (GPa) ec (GPa)a e1 (GPa) [13] v12 [13] v13 [13] g (GPa) k y p Distribution

A1 71 220 5.5 0.65 0.3 2 0.06 3 Gauss
A2 89 220 5.5 0.65 0.3 2 0.06 3 Gauss
A3 124 220 5.5 0.65 0.3 2 0.06 3 Gauss

a Northolt and Sikkema [20], Barton [21]: 240 GPa.

Fig. 11. The square root plastic law compared with the linear plastic shear
law for the PpPTA fibre A1.



the adjustable parameters are listed together with the pos-
sible choices for PpPTA and PET fibres.

In addition to the mechanical parameters characterizing
the domain, the orientation distribution of the fibre has a
large influence on the stress vs. strain curve of the fibre. The
Gaussian distribution is given by

r�Q� � exp 2
sin2 Q

z2

" #
: �34�

A Gaussian distribution can be expected if the orientation
distribution is due to a thermodynamic equilibrium, e.g. in
case of highly oriented aramid fibres [18]. An affine distri-
bution, which is given by

r�u� � l2

cos2 Q 1 l3sin2 Q

 !3=2

�35�

can be expected from a non-equilibrium drawing process,
such as a neck occurring in the high speed spinning process
for PET fibres [14,19].

Stress vs. strain curves using the linear plastic shear law,
see Eq. (32), were calculated for a set of aramid fibres. The
experimental curves are plotted in Fig. 10(a) and the calcu-
lated curves have been plotted in Fig. 10(b). The shear
modulusg is the average value calculated from the modulus
vs. the strain curves of PpPTA fibres, using the technique
described in Ref. [11]. The yield straink y and the yield
parameterp are determined by comparison with the experi-
mental stress vs. strain curves. The complete set of para-
meters used for the calculated curves is given in Table 2.

From Fig. 10 it can be concluded that the linear plastic
shear law gives a satisfactory description of the stress vs.
strain curves of the tested aramid fibres. For higher tensions
the observed strain tends to be higher than the calculated
strain. This can be due to several causes, the most important
ones have been identified in Ref. [13]. Especially at high
tensile stress there will be a small contribution of chain slip
to the total extension or the fibre, in addition to the shear
deformation of the domains. At high tensile stress also the
quadratic form for the stored energy function will be too
simple an approximation for the description of the elastic
response of the fibre. In Fig. 11 the linear plastic shear law is
compared with the square root plastic shear law. For the
curve calculated according to the square root plastic shear
law a value ofp � 0.6 was used. Although the differences
are rather small it can be concluded that the linear plastic
shear law gives a better fit to the observed stress vs. strain
curve.

For the PET fibre Diolen 1125T the linear plastic shear
law has been compared with the square root plastic shear
law as well. The result has been plotted in Fig. 12. The
parameters used for the calculated curves have been listed
in Table 3.

The main characteristics of the experimental curves can
be reproduced by using the linear plastic shear law, but
examination of the yield region demonstrates that the linear
plastic shear law does not describe the characteristic “dip”
just above the yield point. This typical feature of the stress
vs. strain curve of PET fibres is reproduced better by the
square root plastic shear law. From this result it can be
concluded that the strain hardening in highly oriented
PpPTA fibres initiates immediately above the yield point,
while in oriented PET fibres the strain hardening begins
only after a certain plastic shear deformation, see Fig. 9.
Apparently the less oriented and less crystalline domains
in PET fibres yield more easily than the para-crystalline
domains of the aramid fibres.

5.2. The stress vs. strain and sonic modulus vs. strain curves

In the previous section the calculated stress vs. strain
curve has been compared with the experimental curves.
With Eqs. (23)–(25) the strain and the sonic modulus as a
function of the applied stress can be calculated for a single
fibre. In this section these equations are fitted simul-
taneously to both the sonic modulus vs. strain curve and
the stress vs. strain curve of a selection of PpPTA and
PET fibres. The yield of PpPTA fibres is described by the
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Fig. 12. The experimental stress vs. strain curve of the PpPTA fibre 1125T
compared with the calculated curves using the linear and the square root
plastic shear laws.

Table 3
The parameters which have been used for the calculation of the stress vs. strain curve strain of the PET fibre Diolen 1125T using the linear and the squareroot
plastic shear law

Shear law E0 (GPa) ec (GPa) [13] e1 (GPa) [13] v12 [13] v13 [13] g (GPa) ky p Distribution

Lin. 14 125 3 0.65 0.3 1.1 0.05 3.5 affine
Sq. rt. 16 125 3 0.65 0.3 1.1 0.054 1.1 affine



linear plastic shear law and the yield of PET fibres is
described by the square root plastic shear law.

Before explaining the fit procedure the number of inde-
pendent parameters is discussed. Using a single parameter
orientation distribution, like a Gaussian or an affine distri-
bution, the number of adjustable parameters in the equations
is four, i.e.g, (z or l ), k y andp. These four parameters are
linked to four independent features of the stress vs. strain
curve. The shear modulusg in combination withz or l
determine the sonic modulus and the slope of the sonic
modulus vs. the strain curve. The yield point parameterk y

is uniquely determined by the yield point andp determines
the depth of the yield. As these are independent features of
the stress vs. strain curve, four variables is the minimum
number necessary to fit these four features of the experi-
mental curves. If an experimental value for the width of the
orientation distribution is available, e.g. calculated from the
birefringence of the fibre, a fifth experimental variable is
available and thus five independent parameters can be deter-
mined. In this case the shape of the orientation distribution
can be fitted with, for example, a Pearson VII function [22].
For the description of the sonic modulus and the strain as a
function of the stress of these fibres only a Gaussian or an
affine orientation distribution will be used.

The initial value for the shear modulusg and the widthz
of the orientation distribution are determined from the sonic
modulus vs. strain curve using the method described in Ref.
[13]. In the case of aramid fibres, the sonic modulus at zero
stress is almost equal to the initial modulus of the stress vs.

strain curve. For PET fibres the initial modulus of the stress
vs. strain curve is somewhat lower, which is probably due to
the larger viscoelasticity of these fibres. Therefore the stress
vs. strain curve is described with the help of a shear modulus
gm which is slightly lower than the shear modulusg of the
sonic modulus vs. strain curve. In formula (28) for the orien-
tation angleu of the chain segment, the valuegm is used,
because the value ofu determines the value of the calcu-
lated strain, see Eq. (23). In formula (25) for the sonic
modulus the sonic valueg is used. With constant values
for g and z calculated from the sonic modulus vs. strain
curve, the values of the parametersp, k y andgm are deter-
mined from the stress vs. strain curve. The final values for
the shear modulus andz are obtained by fitting the sonic
modulus vs. stress curve, with the value of the sonic modu-
lus as a constraint.

The sonic modulus and the strain of a Twaron 1000 yarn
have been fitted using a Gaussian orientation distribution.
The results are presented in Fig. 13 and the parameters
derived from the fit procedure are listed in Table 4.

The low value ofgm is due to fact that the modulus of the
stress vs. strain curve of a bundle is always somewhat lower
than the modulus of the individual filaments or the sonic
modulus. The measurement was performed on a bundle
because the sonic modulus cannot be accurately measured
on single filaments.

The sonic modulus and strain of Diolen 1125T were
fit by using an affine orientation distribution. For the fit of
the sonic modulus and strain of Diolen 147S a Gaussian
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Fig. 13. The simultaneous fit of (a) the stress vs. strain and (b) the modulus vs. strain curve of the PpPTA fibre Twaron 1000.

Table 4
The parameters used for the calculation of the sonic modulus and the strain as a function of the stress of the Twaron 1000 fibre

Fibre E0 (GPa) g (GPa) gm (GPa) ky p z ksin2 ul
Eson 2 1

ksin2 ul
X-ray

Twaron 1000 91.6 2.0 1.42 0.057 1.7 0.16 0.0263 0.024



orientation distribution was used. The calculated curves are
compared with the experimental ones in Figs. 14 and 15.
The parameters used for the calculated curves have been
listed in Table 5.

Figs. 13–15 show that the curves of sonic modulus and
strain vs. applied tensile stress of both PpPTA and PET
fibres can be described simultaneously by the proposed
equations for fibres with yield. A value for the widthz of
the orientation distribution was determined by fitting these
curves. Using this value the orientation parameters can be
calculated. In Table 3 the value forksin2 ul determined by
the fit of the mechanical data of the Twaron 1000 fibre
has been compared with the value measured by X-ray
diffraction. A good agreement between the two values
has been found. It results from their birefringence that

both PET fibres have the same value forksin2 u l. The
errors on the values ofksin2 u l determined by the fit
procedure are not known very well because not all para-
meters were varied simultaneously, and because no
statistical data from a large number of experiments is avail-
able. The estimated error is in the order of 5%. So it can be
concluded that, also for the PET fibres, the values for
ksin2 u l calculated from the mechanical data are in good
agreement with the values calculated from the birefringence
of the yarn.

In conclusion it has been demonstrated that the essential
features of the observed tensile curve and the sonic modulus
during tensile extension can be described by the use of the
continuous chain model in combination with a simple plas-
tic shear law for plastic deformation of the domain.
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Fig. 14. The simultaneous fit of (a) the stress vs. strain and (b) the modulus vs. strain curve of the PET fibre Diolen 1125T.

Fig. 15. The simultaneous fit of (a) the stress vs. strain and (b) the modulus vs. strain curve of the PET fibre Diolen 174T.
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Table 5
The parameters used for the calculation of the sonic modulus and the strain as a function of the stress of the PET fibres. The value forksin2 ulDn has been
calculated using a value of 0.25 for the maximum value ofDn

Fibre E0 (GPa) g (GPa) gm (GPa) k y p ksin2 ulE

Eson 2 1
ksin2 ul
Eson 2 1

ksin2 ulDn

Diolen 174S 14 1.2 1.0 0.049 2.3 0.1641 0.192 0.186
Diolen 1125T 17 1.1 1.0 0.054 1.1 0.1217 0.185 0.186


